Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis.

Identifieur interne : 002725 ( Main/Exploration ); précédent : 002724; suivant : 002726

Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis.

Auteurs : Lara Danielsen [Allemagne] ; Gertrud Lohaus ; Anke Sirrenberg ; Petr Karlovsky ; Catherine Bastien ; Gilles Pilate ; Andrea Polle

Source :

RBID : pubmed:23516610

Descripteurs français

English descriptors

Abstract

Wood from biomass plantations with fast growing tree species such as poplars can be used as an alternative feedstock for production of biofuels. To facilitate utilization of lignocellulose for saccharification, transgenic poplars with modified or reduced lignin contents may be useful. However, the potential impact of poplars modified in the lignification pathway on ectomycorrhizal (EM) fungi, which play important roles for plant nutrition, is not known. The goal of this study was to investigate EM colonization and community composition in relation to biomass and nutrient status in wildtype (WT, Populus tremula × Populus alba) and transgenic poplar lines with suppressed activities of cinnamyl alcohol dehydrogenase, caffeate/5-hydroxyferulate O-methyltransferase, and cinnamoyl-CoA reductase in a biomass plantation. In different one-year-old poplar lines EM colonization varied from 58% to 86%, but the EM community composition of WT and transgenic poplars were indistinguishable. After two years, the colonization rate of all lines was increased to about 100%, but separation of EM communities between distinct transgenic poplar genotypes was observed. The differentiation of the EM assemblages was similar to that found between different genotypes of commercial clones of Populus × euramericana. The transgenic poplars exhibited significant growth and nutrient element differences in wood, with generally higher nutrient accumulation in stems of genotypes with lower than in those with higher biomass. A general linear mixed model simulated biomass of one-year-old poplar stems with high accuracy (adjusted R(2) = 97%) by two factors: EM colonization and inverse wood N concentration. These results imply a link between N allocation and EM colonization, which may be crucial for wood production in the establishment phase of poplar biomass plantations. Our data further support that multiple poplar genotypes regardless whether generated by transgenic approaches or conventional breeding increase the variation in EM community composition in biomass plantations.

DOI: 10.1371/journal.pone.0059207
PubMed: 23516610
PubMed Central: PMC3596300


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis.</title>
<author>
<name sortKey="Danielsen, Lara" sort="Danielsen, Lara" uniqKey="Danielsen L" first="Lara" last="Danielsen">Lara Danielsen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lohaus, Gertrud" sort="Lohaus, Gertrud" uniqKey="Lohaus G" first="Gertrud" last="Lohaus">Gertrud Lohaus</name>
</author>
<author>
<name sortKey="Sirrenberg, Anke" sort="Sirrenberg, Anke" uniqKey="Sirrenberg A" first="Anke" last="Sirrenberg">Anke Sirrenberg</name>
</author>
<author>
<name sortKey="Karlovsky, Petr" sort="Karlovsky, Petr" uniqKey="Karlovsky P" first="Petr" last="Karlovsky">Petr Karlovsky</name>
</author>
<author>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
</author>
<author>
<name sortKey="Pilate, Gilles" sort="Pilate, Gilles" uniqKey="Pilate G" first="Gilles" last="Pilate">Gilles Pilate</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23516610</idno>
<idno type="pmid">23516610</idno>
<idno type="doi">10.1371/journal.pone.0059207</idno>
<idno type="pmc">PMC3596300</idno>
<idno type="wicri:Area/Main/Corpus">002658</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002658</idno>
<idno type="wicri:Area/Main/Curation">002658</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002658</idno>
<idno type="wicri:Area/Main/Exploration">002658</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis.</title>
<author>
<name sortKey="Danielsen, Lara" sort="Danielsen, Lara" uniqKey="Danielsen L" first="Lara" last="Danielsen">Lara Danielsen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lohaus, Gertrud" sort="Lohaus, Gertrud" uniqKey="Lohaus G" first="Gertrud" last="Lohaus">Gertrud Lohaus</name>
</author>
<author>
<name sortKey="Sirrenberg, Anke" sort="Sirrenberg, Anke" uniqKey="Sirrenberg A" first="Anke" last="Sirrenberg">Anke Sirrenberg</name>
</author>
<author>
<name sortKey="Karlovsky, Petr" sort="Karlovsky, Petr" uniqKey="Karlovsky P" first="Petr" last="Karlovsky">Petr Karlovsky</name>
</author>
<author>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
</author>
<author>
<name sortKey="Pilate, Gilles" sort="Pilate, Gilles" uniqKey="Pilate G" first="Gilles" last="Pilate">Gilles Pilate</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Lignin (biosynthesis)</term>
<term>Mycorrhizae (physiology)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biomasse (MeSH)</term>
<term>Lignine (biosynthèse)</term>
<term>Mycorhizes (physiologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood from biomass plantations with fast growing tree species such as poplars can be used as an alternative feedstock for production of biofuels. To facilitate utilization of lignocellulose for saccharification, transgenic poplars with modified or reduced lignin contents may be useful. However, the potential impact of poplars modified in the lignification pathway on ectomycorrhizal (EM) fungi, which play important roles for plant nutrition, is not known. The goal of this study was to investigate EM colonization and community composition in relation to biomass and nutrient status in wildtype (WT, Populus tremula × Populus alba) and transgenic poplar lines with suppressed activities of cinnamyl alcohol dehydrogenase, caffeate/5-hydroxyferulate O-methyltransferase, and cinnamoyl-CoA reductase in a biomass plantation. In different one-year-old poplar lines EM colonization varied from 58% to 86%, but the EM community composition of WT and transgenic poplars were indistinguishable. After two years, the colonization rate of all lines was increased to about 100%, but separation of EM communities between distinct transgenic poplar genotypes was observed. The differentiation of the EM assemblages was similar to that found between different genotypes of commercial clones of Populus × euramericana. The transgenic poplars exhibited significant growth and nutrient element differences in wood, with generally higher nutrient accumulation in stems of genotypes with lower than in those with higher biomass. A general linear mixed model simulated biomass of one-year-old poplar stems with high accuracy (adjusted R(2) = 97%) by two factors: EM colonization and inverse wood N concentration. These results imply a link between N allocation and EM colonization, which may be crucial for wood production in the establishment phase of poplar biomass plantations. Our data further support that multiple poplar genotypes regardless whether generated by transgenic approaches or conventional breeding increase the variation in EM community composition in biomass plantations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23516610</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>e59207</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0059207</ELocationID>
<Abstract>
<AbstractText>Wood from biomass plantations with fast growing tree species such as poplars can be used as an alternative feedstock for production of biofuels. To facilitate utilization of lignocellulose for saccharification, transgenic poplars with modified or reduced lignin contents may be useful. However, the potential impact of poplars modified in the lignification pathway on ectomycorrhizal (EM) fungi, which play important roles for plant nutrition, is not known. The goal of this study was to investigate EM colonization and community composition in relation to biomass and nutrient status in wildtype (WT, Populus tremula × Populus alba) and transgenic poplar lines with suppressed activities of cinnamyl alcohol dehydrogenase, caffeate/5-hydroxyferulate O-methyltransferase, and cinnamoyl-CoA reductase in a biomass plantation. In different one-year-old poplar lines EM colonization varied from 58% to 86%, but the EM community composition of WT and transgenic poplars were indistinguishable. After two years, the colonization rate of all lines was increased to about 100%, but separation of EM communities between distinct transgenic poplar genotypes was observed. The differentiation of the EM assemblages was similar to that found between different genotypes of commercial clones of Populus × euramericana. The transgenic poplars exhibited significant growth and nutrient element differences in wood, with generally higher nutrient accumulation in stems of genotypes with lower than in those with higher biomass. A general linear mixed model simulated biomass of one-year-old poplar stems with high accuracy (adjusted R(2) = 97%) by two factors: EM colonization and inverse wood N concentration. These results imply a link between N allocation and EM colonization, which may be crucial for wood production in the establishment phase of poplar biomass plantations. Our data further support that multiple poplar genotypes regardless whether generated by transgenic approaches or conventional breeding increase the variation in EM community composition in biomass plantations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Danielsen</LastName>
<ForeName>Lara</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August University of Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lohaus</LastName>
<ForeName>Gertrud</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sirrenberg</LastName>
<ForeName>Anke</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karlovsky</LastName>
<ForeName>Petr</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bastien</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pilate</LastName>
<ForeName>Gilles</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23516610</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0059207</ArticleId>
<ArticleId IdType="pii">PONE-D-12-36990</ArticleId>
<ArticleId IdType="pmc">PMC3596300</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 1990 Dec;7(1_2_3_4):79-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):983-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):275-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Dec;112(4):1479-1490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14014-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17709743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1083-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20551251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Mar;76(6):1831-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3263-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Feb;214(4):653-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11925050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2012 Aug;2(8):1935-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22957194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Nov;64(5):1013-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Aug;27(8):1153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17472941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2003;38(4):305-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):621-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19386808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(1):249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20881013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Sep;87(9):2278-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Aug;32(8):992-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3669-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Aug;149(1):158-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16642319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Mar;17(2):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Oct;63(17):6173-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Aug;90(8):2098-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19739372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Oct;14(10):542-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 13;329(5993):790-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20705851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Mar;59(3):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7683183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):239-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jun;221(3):328-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15599760</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
<name sortKey="Karlovsky, Petr" sort="Karlovsky, Petr" uniqKey="Karlovsky P" first="Petr" last="Karlovsky">Petr Karlovsky</name>
<name sortKey="Lohaus, Gertrud" sort="Lohaus, Gertrud" uniqKey="Lohaus G" first="Gertrud" last="Lohaus">Gertrud Lohaus</name>
<name sortKey="Pilate, Gilles" sort="Pilate, Gilles" uniqKey="Pilate G" first="Gilles" last="Pilate">Gilles Pilate</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Sirrenberg, Anke" sort="Sirrenberg, Anke" uniqKey="Sirrenberg A" first="Anke" last="Sirrenberg">Anke Sirrenberg</name>
</noCountry>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Danielsen, Lara" sort="Danielsen, Lara" uniqKey="Danielsen L" first="Lara" last="Danielsen">Lara Danielsen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002725 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002725 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23516610
   |texte=   Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23516610" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020